Chapter 9 Ionic and Covalent Bonding (Sections <u>7.1</u>, <u>7.2</u>, <u>7.3</u>, <u>7.4</u>, <u>7.5</u>, <u>8.1</u>, <u>8.2</u>, and <u>8.3</u> in OpenStax)

Ionic Bonds

- An ionic bond is formed by electrostatic attraction between cations (positive) and anions (negative).
- Some elements, primarily metals like Na (with $[Ne]3s^1$), lose e^{-1} 's easily to obtain a noble gas e^{-1} configuration. Na becomes Na⁺¹, which has [Ne] or $1s^22s^22p^6$.
- Other elements, primarily nonmetals like Cl (with [Ne]3s²3p⁵), gain e⁻¹'s easily to obtain a noble gas e⁻¹ configuration. Cl becomes Cl⁻¹, which has [Ar] or [Ne]3s²3p⁶.
- Alternating positive and negative ions are held together to form the ionic solid (crystal).
- Bonding implies an overall decrease in net energy (stability increases).
- Ionic bonding can be considered as two steps:
 - First, there is an e^{-1} transfer to form ions.

$$\begin{split} \text{Na}_{(g)} & \rightarrow \text{Na}^{+1}{}_{(g)} + e^{-1} \quad \Delta H = + \ 496 \ \text{kJ/mol} \qquad (\underline{\text{Ionization Energy}}) \\ \text{Cl}_{(g)} + e^{-1} & \rightarrow \text{Cl}^{-1}{}_{(g)} \qquad \Delta H = - \ 349 \ \text{kJ/mol} \qquad (\underline{\text{Electron Affinity}}) \\ & \Delta H_{\text{total}} = + \ 496 - 349 = + \ 147 \ \text{kJ/mol} \end{split}$$

- Then, the gas phase ions attract each other to form a crystal. $Na^{+1}_{(g)} + Cl^{-1}_{(g)} \rightarrow NaCl_{(s)}$ This follows Coulomb's law, where Q's are the charges for the ions, and $Q_1 = -Q_2$. Lattice Energy = sum of all (kQ_1Q_2/r) 's = $\Sigma(-kQ_1^2/r) = -787$ kJ/mol

Determining Lattice Energy (LE) with the Born-Haber cycle

- The lattice energy is released by converting the monatomic gaseous ions into a solid crystal. So, energy input would be needed to convert the ionic solid into isolated gas phase ions.
- Actual direct measurement of LE is difficult. But, it can be determined indirectly through the Born-Haber cycle, which forms NaCl_(s) stepwise. First, the elements are converted into monatomic gases. Then, the gases are ionized. Finally, the ionized gases are crystallized to form the ionic solid. The last step releases LE.
- Converting Na and Cl₂ into monatomic gases involves: Sublimation of Na metal $Na_{(s)} \rightarrow Na_{(g)}$ $\Delta H_{sub}^{o} = + 107.5 \text{ kJ/(mol Na)}$ Dissociation of chlorine gas $(\frac{1}{2})Cl_{2(g)} \rightarrow Cl_{(g)}$ $\Delta H_{diss}^{o} = + 121.3 \text{ kJ/(mol Cl)}$
- Ionization of Na_(g) and Cl_(g) into Na⁺¹_(g) and Cl⁻¹_(g) is as shown earlier (+ 496 and 349 kJ). So, the total except for lattice energy is found by: (107.5 + 121.3) + (496 - 349) = + 375.8 kJ
- The heat of formation for Na_(s) + (¹/₂)Cl_{2(g)} → NaCl_(s) is 411.2 kJ (from <u>Appendix G</u>). This gives us: So, the lattice energy is: ΔH_{f}^{o} of NaCl_(s) = -411.2 kJ = +375.8 + LE LE = (-411.2) - (375.8) = -787 kJ/mol

Ionic Solids

- Ionic solids typically have high melting points due to strong electrostatic attractions.

$$T_{\rm M} ({\rm NaCl}) = 801^{\circ}{\rm C}$$
 $T_{\rm M} ({\rm MgO}) = 2800^{\circ}{\rm C}$

- MgO has a much higher T_M than NaCl because the ionic charges are + 2 and - 2, and Coulombs law is a function of the charges (Q₁ and Q₂).

- Ionic Solids typically do *not* conduct electricity when solid because both ions have stable e^{-1} configurations, and do not easily gain or lose e^{-1} 's.
- Ionic liquids do conduct electricity because the ions can move, and thus carry current.
- Ionic solutions also conduct electricity for the same reason ions can move.

Electronic Configuration

- Metal elements in columns IA, IIA, and IIIA have same number of valence e⁻¹'s as their column number, and they lose those valence e⁻¹'s to get a noble gas e⁻¹ configuration. Examples include Na⁺, Mg⁺², and Al⁺³.

B is the exception. It is nonmetallic and forms covalent bonds instead.

- Nonmetals in rows 2, 3, and 4 of columns IIIA, IVA, and VA do not form cations easily. They prefer to bond covalently and form molecules instead. Examples include B, C, and N.
- Higher periods (rows 5 and 6) of IIIA, IVA, and VA are metallic, and are often stable with s². That is, they keep both e⁻¹'s in their s subshell, along with their filled d subshells. They gain a charge equal to column number minus two by losing their e⁻¹'s from p only. Examples include Tl⁺, Sn⁺², Pb⁺² and Bi⁺³.
- A charge of + 4 is less common, and the compounds involved are often covalent, like SnCl₄.
- Columns VIA and VIIA, except for Po, are nonmetals and gain e^{-1} 's to obtain a noble gas e^{-1} configuration. Their charge is column number minus eight. Examples include S^{-2} and Cl^{-1} .
- Transition metals (B columns) do not usually obtain a noble gas configuration. They lose e^{-1} 's from their s subshell first, then maybe one or two e^{-1} 's from their d subshell.

Lewis e⁻¹ Dot Symbols

- Valence e^{-1} 's (outermost s and p) of atoms are shown as <u>dots</u> around the element's symbol.
- The dots allow us to account for the e^{-1} 's as they are transferred to create the ions.

Na• + •Cl:
$$\rightarrow$$
 Na⁺¹ + [:Cl: ⁻¹]

Ex 9.01 Dot Symbol Reaction to form CaF2

$$:F \cdot + \cdot Ca \cdot + \cdot F : \rightarrow [:F : ^{-1}] + Ca^{+2} + [:F : ^{-1}]$$

Ex 9.02 Electron Configuration for the Oxide Ion (O^{-2})

- O has eight e^{-1} 's total, and six of these e^{-1} 's are dots in the valence shell (2s and 2p).
- This means O is $[He]2s^22p^4$, and two more e^{-1} 's would fill the 2p subshell.
- So O^{-2} is [He]2s²2p⁶, or [Ne], and its Lewis symbol has eight dots.

Ex 9.03 Electron Configurations for the Iron(II) and Iron(III) Ions (Fe^{+2} and Fe^{+3})

- In Example 8.04, we saw that Fe is $[Ar]4s^23d^6$.
- Transition metals often lose the two e^{-1} 's in the outermost s subshell first.
- So, Fe^{+2} is [Ar]3d⁶. Next, an e^{-1} from 3d can be removed, so Fe^{+3} is [Ar]3d⁵.

Ionic Radius

- Ionic Radius is the size of the sphere around an ion's nucleus, where the e^{-1} 's are located.
- Cations are smaller than their uncharged atoms because they lost e⁻¹'s.
 Loss of e⁻¹'s decreases the electron-electron repulsion, so that the remaining e⁻¹'s can get closer to the nucleus. Also, losing all of the outer shell e⁻¹'s leaves only the inner shells.
- Anions are larger than their uncharged atoms because they gained e⁻¹'s.
 Adding e⁻¹'s increases the electron-electron repulsion, pushing them farther apart.
- Sizes of ions follow same periodic table trends as uncharged atoms: Size decreases across row, as protons are added (Z increases). $Na^{+1} > Mg^{+2}$ and $O^{-2} > F^{-1}$ Size increases down a column, as shells are added (n increases). $Ca^{+2} > Mg^{+2}$ and $Cl^{-1} > F^{-1}$
- Ions which have the same total number and configuration of e^{-1} 's are called isoelectronic. For example, each of these ions has a total of ten e^{-1} 's : O^{-2} , F^{-1} , Na^{+1} , and Mg^{+2} .
- The size trend for an **isoelectronic series** is determined by the **number of protons only**, because the **number of electrons** is the **same** for all of the ions. Protons pull the e⁻¹'s inward, so size **decreases** as the number of protons **increases**.

Ex 9.04 Size Trend for Isoelectronic Ions $(O^{-2}, F^{-1}, Na^{+1}, and Mg^{+2})$

- These ions are all isoelectronic with [Ne], and each has ten e^{-1} 's total.
- Increasing the protons will decrease the size if the number of electrons is constant. O^{-2} (8 protons) > F^{-1} (9 protons) > Na^{+1} (11 protons) > Mg^{+2} (12 protons)

Covalent Bonds

- Covalent Bonds are formed by sharing e^{-1} 's, and the orbitals of the two atoms overlap, so that the e^{-1} pair is attracted to and bonded with both nuclei.
- A normal covalent bond uses one e^{-1} from each of two atoms to create a shared pair of e^{-1} 's.
- Lewis dot formulas put the e^{-1} pair (2 dots) directly between the two symbols (H:H).
- The potential energy (E_{Pot}) <u>diagram</u> shows the minimum energy at a bond length of 74 pm. This is the most stable distance between the nuclei of two covalently-bonded H atoms.

Coordinate Covalent Bonds

- Both shared e^{-1} 's came from the same atom.
- For example, in the acid-base reaction for ammonia, the N atom donates a (nonbonding) pair of e⁻¹'s to the H⁺¹ (has no e⁻¹'s).
 H⁺¹ + :NH₃ → H:NH₃⁺¹ (same as ammonium or NH₄⁺¹)

Octet Rule

- Atoms in covalent molecules tend to have eight valence e^{-1} 's total, including those that are shared, such as in F₂ and CCl₄.
- This is because these atoms are stable with their valence s and p subshells filled.
- There are exceptions, and some atoms can have fewer or more valence e^{-1} 's. For example, in the compound BF₃, the B has only six valence e^{-1} 's. Also, the P atom in PF₅ has ten valence e^{-1} 's.

Multiple Bonds

- More than one pair of e^{-1} 's can be shared between two atoms.
- Show 2 pairs of dots for double bonds. H_2C :: CH_2
- C, N, O, and S can form double bonds. ::O::C::O::
- Show 3 pairs of dots for triple bonds. H:C:::C:H
- Only C and N can form triple bonds. H:C:::N:

Polar Covalent Bonds and Electronegativity (e/n)

- Polar covalent bonds occur where bonding e^{-1} 's spend more time nearer to one atom, rather than the other. The e^{-1} 's stay closer to the atom which has a higher attraction for e^{-1} 's.
- The e/n is a measure of an atom's ability to draw e^{-1} 's to itself.
- Linus Pauling's scale uses bond energies to assign numbers from 0 to 4 to atoms. Values increase across a row, and decrease down a column.
- Here is a periodic table diagram with <u>e/n values</u>.
 F (lighter and nonmetallic) in the *top right* of the table has the *highest* value (4.0).
 Fr (heavier and metallic) in the *lower left* of the table has the *lowest* value (0.7).
- The difference between e/n values for two bonded atoms roughly measures the bond polarity. Generally, if the result is < 0.5, the bond is nonpolar. Polar covalent bonds range from 0.5 to 1.5, and a value > 1.5 is primarily an ionic bond (not covalent).
- For HCl, the Cl has the higher e/n (3.0 vs. 2.1), so it attracts e⁻¹'s more so than H.
 3.0 2.1 = 0.9 The value is between 0.5 and 1.5, so H-Cl is a polar covalent bond. The Cl has a partial negative charge (δ–), and the H has a partial positive charge (δ+).

Ex 9.05 C-C, C-N, and O-H Bond Polarities

- For C-C, the e/n difference is 2.5 2.5 = 0.0, which is completely nonpolar.
- For C-N, the e/n difference is 3.0 2.5 = 0.5, which is slightly polar. N is δ and C is δ +.
- For O-H, the e/n difference is 3.5 2.1 = 1.4, which is very polar. O is δ and H is δ +.

Rules for Drawing Lewis Dot Formulas for Covalent Molecules and Ions

1. First, find the total number of valence e^{-1} 's for the entire molecule.

Add one e^{-1} for each negative charge, and subtract one e^{-1} for each positive charge.

- 2. Write the skeleton structure with the atomic symbols, showing which atoms are bonded together. Bond the atoms together by placing a pair of dots between them.
- 3. Then, put dots around the outside atoms to satisfy the octet rule.
- 4. Put the remaining dots around the central atom. If there are less than 8 e^{-1} 's on the central atom, there may be a multiple bond present.

Ex 9.06 Dot Structure for Sulfur Dichloride (SCl₂)

- Cl-S-Cl has $6 + 7(2) = 20 e^{-1}$'s, and 16 are needed to give the Cl's octets.
- Out of that 16 e^{-1} 's, there are 4 e^{-1} 's in two bonds shared w/S.
- This leaves $4 e^{-1}$'s, which will complete S's octet.

Ex 9.07 Dot Structure (diagrams on previous page) for Carbonyl Chloride (COCl₂)

- $COCl_2$ has $4 + 6 + 2(7) = 24 e^{-1}$'s, and all $24 e^{-1}$'s are needed for the O and Cl's octets.
- But drawing single bonds only will give six e^{-1} 's only to C in the three bonds with C.
- So, a double bond between C and O is needed to give 2 more e^{-1} 's to C.

Ex 9.08 Dot Structure for the Tetrachloroborate Anion (BCl_4^{-1})

- BCl_4^{-1} is an anion with one extra e^{-1} . It has $3 + 4(7) + 1 = 32 e^{-1}$'s.
- All 32 e^{-1} 's are needed for the four F's octets.
- The four single bonds give B an octet as well. _

Resonance (Delocalization)

- Resonance occurs where more than one correct dot structure is possible. Ο : <u>0</u> : Ü
- Show all of the dot structures with \leftrightarrow between each of them.

Ex 9.09 Resonance Dot Structures for Carbonate Anion (CO_3^{-2})

- CO_3^{-2} has $4 + 3(6) + 2 = 24 \text{ e}^{-1}$'s. All 24 e^{-1} 's are needed for the O's octets.
- Also, one double bond is needed for C's octet.

Delocalized Bonding

- Delocalized bonding is a type of bonding where a bonding e^{-1} pair is spread over > 2 atoms.
- The result of averaging the resonance forms is called a resonance hybrid. _
- With O_3 , the two bonds between O's are averaged to appear like 1.5 e^{-1} pairs per bond.

Exceptions to Octet Rule with more than 8 e^{-1} 's

- <u>Phosphorus pentafluoride</u> (PF₅) has 5 pairs (or $10 e^{-1}$'s) surrounding the central P atom.
- This results from using one of phosphorus' 3d orbitals in addition to its 3s and 3p orbitals.

Ex 9.10 Dot Structure for Xenon Tetrafluoride (XeF₄)

- Xe already has an octet with eight e^{-1} combined from 5s and 5p.
- Each F adds one more e^{-1} to the total with a shared e^{-1} pair.
- This gives Xe a total of twelve valence e^{-1} in XeF₄.
- The extra four e^{-1} 's use two of Xe's 5d orbitals.
- Four e^{-1} pairs are shared with the F's.
- So, there are four more e^{-1} 's in two nonbonding e^{-1} pairs.

Exceptions to Octet Rule with less than 8 e^{-1} 's

- BF₃ only has 3 pairs (or $6 e^{-1}$'s) surrounding the central B atom.
- A normal covalent bond has two shared e^{-1} 's, with one e^{-1} from each of the two atoms.
- Since B only has three valence e^{-1} 's, it can only form three normal covalent bonds.
- BF_3 can, however, accept an e^{-1} pair from an atom which has a nonbonding e^{-1} pair. So, it reacts with :NH₃, to form the complex F₃B:NH₃. The new bond gives B its octet.
- Similarly, $BeF_{2(g)}$ has only two pairs around Be, which has two valence e^{-1} 's.
- However, $BeF_{2(s)}$ and $BeCl_{2(s)}$ form molecules that are long chains of BeX_2 formula units. This allows Be to use e^{-1} pairs from neighboring F and Cl atoms in order to obtain its octet.

Gas Phase:
$$: F: Be: F:$$

 $.$ Solid Phase: Cl Cl Cl Cl Cl $Gas Phase:$ $: F: Be: F:$
 $.$ $Solid Phase:$ Be Be Be Be Be Cl Cl Cl Cl Cl Cl Cl Cl

- AlCl_{3(s)} is ionic, but melts at 192 $^{\circ}$ C to form covalently bonded Al₂Cl_{6(L)} molecules.

Formal Charge

- Formal charge is a hypothetical charge on an atom that results if the bonding e^{-1} 's are all shared equally between atoms.
- Formal charges are eliminated, where possible, in the Lewis dot structures of neutral compounds.
- If the formal charges cannot be completely eliminated, such as with polyatomic ions, then they are at least minimized.
- Assign valence e^{-1} 's to a particular atom as follows:
 - \circ Half of the two e⁻¹'s in a bond (i.e., one e⁻¹ each) belong to each of the two atoms.
 - \circ Both e⁻¹'s in a (nonbonding) lone pair belong to the atom that they are attached to.
- For example, N owns $2 + 3(1) = 5 e^{-1}$'s of the surrounding octet in :NH₃. This is the same as N's original number of valence e^{-1} 's, so this N has no formal charge.
- Write the Lewis dot structures to minimize formal charges as follows:
 - Choose the dot formula with the lowest values on formal charges.
 - Place the negative charge on the more electronegative atom.
 - Don't put like charges on adjacent atoms.

Ex 9.11 Formal Charges on $\underline{H_2SO_4}$

- With all single bonds, each atom has an octet, but S is + 2 and two oxygens are 1.
- Formal charges are eliminated if S uses two d orbitals, and becomes an exception to the octet rule, so that it can have double bonds with the two free O's.

Bond Length

- Bond length is the distance between the nuclei of two single-bonded atoms.
- Bond length approximately equals the sum of the <u>covalent radii</u> for each atom.
- <u>This chart</u> predicts the bond length for a C-Cl bond as 77 + 99 = 176 pm.

Bond Order

- Bond Order is the number of shared e^{-1} pairs:
 - \circ 1 for single bonds (H₃C:CH₃).
 - \circ 2 for double bonds (H₂C::CH₂).
 - 3 for triple bonds (HC:::CH).
- Increasing the bond order will increase the bond strength and the decrease bond length. More shared e⁻¹ pairs makes the bond shorter and stronger.

Ex 9.12 Bond Lengths for Carbon-Carbon Bonds in C₂H₂, C₂H₄, and C₂H₆

-	The bond length trend is as follows:	triple < double < single (longest)
		$H:C:::C:H < H_2C::CH_2 < H_3C:CH_3$
-	The strength trend is the reverse:	triple > double > single (weakest)

Bond Energy

- Bond energy is the average ΔH input needed to break a bond in a gas phase molecule.
- $CH_{4(g)} \rightarrow C_{(g)} + 4H_{(g)}$ has $\Delta H = +1662$ kJ and four C-H bonds are broken. So, the experimental C-H bond strength is $(+1662) \div 4 = 415.5$ kJ.
- The average bond energy value for the C-H bond in Table 7.2 is 415 kJ.
- Note that bond energy for double and triple bonds in the table is generally much higher than for single bonds.
- Bond energy of CH₄ reactant is 4×415 kJ according to the table, and the bond energy for the product is 0 kJ (no bonds).
- The enthalpy of a reaction can be found by:

 $\Delta H = (bond energy of reactants) - (bond energy of products)$

- To break CH₄ down completely into its atoms using the table's values we get: $\Delta H = (4 \times 415) - (0) = 1660 \text{ kJ}$

Ex 9.13 Forming Polyethylene from Ethylene $n[H_2C=CH_2] \rightarrow [-H_2C-CH_2-]_n$

- Polyethylene is a polymer, and its molecular structure is a chain of repeating ethylene units.
- The product's "n" subscript is the number of connected [repeating unit]'s in the chain.
- One C=C (double bond) is broken and is replaced with two C-C single bonds.
- One C-C is between the C's inside the repeating unit (product).
- The bonds on the left and right of that unit connect it to other repeating units, so each of those counts as only half of a bond inside the repeating unit. So, $\frac{1}{2} + 1 + \frac{1}{2} = 2$ bonds total.

 $\Delta H = [C=C + (4 C-H)] - [(2 C-C) + (4 C-H)] \text{ for } n = 1 \text{ mole of } H_2C=CH_2$ $\Delta H = [611 + (4 \times 415)] - [(2 \times 345) + (4 \times 415)] = -79 \text{ kJ per mole of } H_2C=CH_2$